Atomic Structure

	STUDY	LIS	F rom Paul Groves
What I can	Can I Calculate About Waves?		State whether any specified transition will absorb or emit energy and the type of EMR involved.
	wavelength (λ) and frequency (ν). Convert between Hz & MHz, meters, nanometers (nm) and picometers (pm)		Calculate the energy of the photon from any transition in the hydrogen atom.
	Calculate λ , ν , or E of any wave given one of the other quantities. Show my work clearly using units that		a single photon. Identify the Lyman series in terms of electron transitions in the hydrogen atom.
	cancel. Relate the size of wavelength to size of frequency and to size of energy. Write the equations and constants involved in converting between λ , ν , and E. Indicate the crest, trough, wavelength, and amplitude of a traveling transverse wave. Indicate nodes, antinodes, and wavelengths of a standing wave on a string. Explain how nodes and antinodes on a standing wave relate to the constructive and destructive interference of two waves on the same string.		 Can Electrons Be Both Particles and Waves? Explain the significance of Balmer lines and quantized energy levels. Draw standing waves that fit into a Bloogle showing that the frequencies are quantized. Describe the photoelectric effect. Explain how the photoelectric effect provides evidence that light (waves) must be particles (photons). Explain how de Broglie devised the wavelength of a moving particle from E=mc² and E=hv.
What	 State the seven types of electromagnetic radiation (EMR) in order of energy, frequency, and wavelength. Does the Hydrogen Spectrum Tell About Atoms? Describe the differences among a continuous emission spectrum, a bright line spectrum, and an absorption spectrum. Describe the visible spectrum from a hydrogen gas discharge tube. 		Calculate the wavelength of any moving particle. State that calculating the wavelength (λ) of a particle is a facet of wave-particle duality. Explain that electrons, whose energy is quantized, must be waves because waves, not particles, can be quantized. Explain what probability waves are. Draw the general shapes of orbitals (the
	State how Niels Bohr explained the lines in the hydrogen spectrum including the specific transitions that lead to the visible lines in the Balmer series. Calculate the energy of any level, n, in the hydrogen atom.		standing waves of an electron). State the rules of quantum numbers and relate quantum numbers to individual orbitals. Relate orbitals to the hydrogen energy levels.